

















ON THE DETERMINATION OF ELLIPTIC ORBITS FROM THREE COMPLETE
OBSERVATIONS.

By J. WILLARD GIBBS.

The determination of an orbit from three complete observations by the solution of the equa-
tions whieh represent elliptie motion presents so great diffienlties in the general case, that in the
first solution of the problem we must generally limit ourselves to the case in which the intervals
between the observations are not very long. In this case we substitute some comparatively simple
relations between the unknown quantities of the problem, whieh have an approximate validity for
short intervals, for the less manageable relations which rigoronsly subsist between these quantities.
A comparison of the approximate solution thns obtained with the exact laws of elliptic motion
will always afford the means of a closer approximation, and by a repetition of this proeess we may
arrive at any required degree of aecuracy.

It is therefore a problem not without interest—it is, in faet, the natural poiut of departure in
the study of the determination of orbits—to express in a manner eombining as far as possible sim-
plieity and acenraey the relations between three positions in an orbit separated by small or mod-
erate intervals. The problem is not entirely determinate, for we may lay the greater stress upon
simplieity or upon aceuraey; we may seek the most simple relations whieh are sufficiently aceurate
to give us any approximation to an orbit, or we may seek the most exact expression of the real
relations, which shall not be too eomplex to be serviceable.

DERIVATION OF THE FUNDAMENTAL EQUATION.

The tollowing very simple eonsiderations afford a vector equation, not very complex and quite
amenable to analytical transformation, whieh expresses the relations between three positions in
an orbit separated by small or moderate intervals, with au aceuracy far exeeeding that of the
approximate relations generally used in the determination of orbits.

If we adopt such a unit of time that the acceleration due to the sun’s action is unity at a
unit’s distanee, and denote “he veectors* drawn from the sun to the body in its three positions by

* Veetors, or directed quantities, will be represented in this paper by German capitals. The following notations will
be used in connection with them.

The sign == denotes identity in direetion as well as length.

The sign + denotes geometrical addition, or what is called composition in mechanics.

The sign — denotes reversal of direction, or composition after reversal.

The notation ¥-Y denotes the product of the lengths of the vectors and the cosine of the angle which they
include. It will be called the direct product of 9 and 8. If x, y, z are the rectangnlar components of ¥, and z/, ¥/,
2" those of 0,

A B=ra'yy' {22,

Y-¥ may be written ¥> and called the square of Y[.
The notation 9 XMW will he used to denote a vector of whieh the length is the product of the lengths of Y and B
and the sino of the angle which they include. Its direetion is perpendicular to ¥ and 9, and on that side on which
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From these six equations the five constants %, 3, €, ®, € may be eliminated, leaving a single
equation of the form

PN 24 B, By
A,(l+r—1§> sm—( —,—22) Rt 4, <1+;3-§) Ry=0, @
where
AT =8 '
Al_r,-}-n A3_11+‘l'3
By=#(—12+ 1173+ 7% By=75(1+ 371173+ 13%) By=1y(r’+1173—175).

This we shall call our fundamental equation. In order to discuss its geometrical signification,

let us set
B B B.
'nl=A1<1+r—1;> nz=(1—72§ na=Aa<1+r—3§>; (2)
so that the equation will read
" nlml—hz%-{-nﬂg:& (3)

This expresses that the vector n,R; is the diagonal of a parallelogram of which #,%; and #,R; are
sides. If we multiply by R; and by R, in skew multiplication, we get

MmPy X Rz—n MRy X Ry=0, —n R X R+ 1M1 X R2=0, (4)
whence :

R xR Mix Rs_ Rix Ry
m o~ n, I n3 ¢

(®)

Our equation may therefore be regarded as signifying that the three vectors ®;, R,, R; lie in one
plane, and that the three triangles determined each by a pair of these vectors, and nsually de-
noted by [ryr3], [r173], [717:], are proportional to

By e NBY y B
A(1+3): (1= As(1433)-

Since this vector equation is equivalent to three ordinary equations, it is evidently sufficient
to determine the three positions of the body in connection with the conditions that these positions
must lie upon the lines of sight of three observations. To give analytical expression to these
conditions, we may write ¢,, €,, ¢; for the vectors drawn from the sun to the three positions of
the earth (or, more exactly, of the observatories where the observations have been made), F,, 3z, &s
for unit vectors drawn in the directions of the body, as observed, and p,, oz, p; for the three
distanees of the body from the places of observation. We have then

W=E614 0,51, o =C+ 2.3, Rs=C4 053Fs. (6)

By substitution of these values our fundamental equation becomes

BN L E8 0 IBSN - B, =
A1(1+r ; )((‘31+P161)—( 1—-;;>(Q'z+p262)+1‘13<1+' g)(Gs'f'palSs):O? (7
\ 13 b T3
where oy, 0;, 3, 71, 72, 75 (the geocentric and heliocentric distanees) are the only unknown quanti-
ties. From equations (6) we also get, by squaring both members in each,
7'12=G'12+2(GI‘RI)/)1+P12, 7'22=G'22+2((‘:'2'82)Pz+ 5 7'32=G'32+2(G'3'83)Pa+ﬂa’, (8)

by which the values of #, 7., r; may be derived from those of p;, p,, s, Or vice versdi. Equations
(7) and (8), which are equivalent to six ordinary equations, are sufficient to determine the six
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to reduce the residual to zero, we may apply equation (15) to these finite differences, and will have
approximately, when these differences are not very large,

—C=C'4q+C"Aq,4+ €' Aq,. (19)
This gives*
vl (€ C”C”’) pABEN (egu_/%j/) = (€erery (20)

(C’ ”C’”) (3'3”@’ /) (elélielll)'

.

From the corrected values of ¢y, ¢:, ¢; we may calculate a new residual &, and from that determine
another correction for each of the quantities ¢, ¢., ¢s.

It will sometimes be weortk while to use formula a little less simple for the sake of a more
rapid approximation. Instead of equation (19) we may write, with a higher degree of accuracy,

—CG=C'4q+EC" 4q+C""' Aq:+3T (41 )+ 3T (A + 3T (dgs)?, (21)
where
Py p Ay L B @)
]/ ___dqlz _2AlB| q l+1+B,’._3 dq1 l
_ @€, ) B, @(ry)
e aqz 8o I By ~dgy? (22)
(l \43 ) (12(,’-3—3)(’
fllll ‘ q _2A3B3 83+1+B ,’,3_3 dq32 3

It is evident that ¥/ is generally many times greater than 3/ or I/, the factor B,, in the case of
equal intervals, being exactly ten times as great as 4;B, or 4;B;. This shows, in the first place,
that the accurate determination of 4¢, is of the most impertance for the subsequent approxi-
mations. It also shows that we may attain nearly the same accuracy in writing

—C=C' g+ €/ Agy+ & Agy+ 3T Ag5? (23)

We may, however, often do a little better than this without using a mere complicated eqnation.
For 3/4+3"/ may be estimated very roughly as equal to 1. Whenever, therefore, 4¢, and dq,
are about as large as 4dg,, as is often the case, it may be a little better to use the coefficient -&;
instead of } in the last term.

Tor 4g,, then, we have the equation

__(C@III"’I) (CICII"'III)qu_!_T_O_('TII y\IIIv )qu = (24)

(3"€/""€) is easily computed from the formula

(31 = 1 (1 _5£><(€/€//g/// (% @’”C’)) ( /3 >(~ gy, (25)

which may be derived from equations (18) and (22).

The quadratic equation (24) gives tweo values of the correction to be applied -to the position of
- the body. When they are not too large, they will belong to twe different solutions of the problem,
generally to the two least removed from the values assumed. But a very large valne of 4g, must
not be regarded as affording any trustwerthy indication of a solution of the preblem. In the
majority of cases, we euly care for one of the roots of the equation, which is distinguished by
being very small, and which will be most easily calenlated by a small correction to the value which
we get by neglecting the quadratic term.t

* These equations are obtained by taking the direct products of both members of the preceding equation with
&% ”’ ENx& ’ and €/ x \_,” respectively. See foot-note on page 81.

tIn the case of S\\lft s comet (V 1880), the writer found by the quadratic equation —.247 and —.116 for cor-
reetions of the assumed geocentric distance .250. The first of these nnmbers gives au approximation to the position
of the earth; the sccond to that of the comet, viz., the geocentric distanco .134 instead of the trne valne .1333. Tho
coefficient 1% was used in tho quadratic equation; with tho coefficient 4 the approximations would not be guite so
good. The value of the correction obtained by neglecting the quadratic term was .079, which indicates that the
approximations (in this very critical case) would be quite tedious withont the nse of tho qnadratic term.
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CORRECT.ION OF THE FUNDAMENTAL EQUATION.

When we have thus determined, by the numerical solution of our fandamental equation,
approximate values of the three positions of the body, it will always be possible to apply a small
nnmerical correction to the equation, so as to make it agree exactly with the laws of elliptic
motion in a fictitious case differing but little from the actnal. After such a correction, the equa-
tion will evidently apply to the actual case with a much higher degree of approximation.

There is room for great diversity in the application of this principle. The method which
appears to the writer the most simple and direct is the following, in which the correction of the
intervals for aberration is combined with the correction required by the approximate nature of
the equation.* .

. The solution of the fundamental equation gives us three points, which must necessarily lie in
one plane with the snn, and in the lines of sight of the several observations. Throngh these points
we may pass an ellipse, and calculate the intervals of time required by the exact laws of elliptic
motion for the passage of the body bhetween them. If these calculated intervals shonld be iden-
tical with the given intervals, corrected for aberration, we would evidently have the true solution
of the problem. But suppose, to fix our ideas, that the caleulated intervals are a little too loung.
It is evident that if we repeat onr ealculations, using in our fundamental equation intervals short-
ened in the same ratio as the calculated intervals have come out too long, the intervals calculated
from the second solution of the fundamental eqnation must agree almost exactly with the desired
values. If necessary, this process may be repeated, and thus any required degree of accuracy
may be obtained, whenever the solution of the uncorrected equation gives an approximation to
the true positions. Jor this it is necessary that the intervals should not be too great. It appears,
however, from the results of the example of Ceres, given hereafter, in which the heliocentric mo-
tion exceeds 62°, but the calculated values of the intervals of time differ from the given values by
little more than one part in two thousand, that we have here not approached the limit of the
application of our formula.

In the usual terminology of the subject, the fundamental equation with intervals uncorrected
for aberration represents the first hypothesis, the same equation with the intervals affected by cer-
tain numerical coefficients (differing little from unity) represents the second hypothesis, the third
hypothesis, should such be necessary, is represented by a similar equation, with corrected coeffi-
cients, etc.

In the process indicated there are certain economies of labor which should not be left un-
mentioned, and certain precautions to be observed in order that the neglected figures in our com-
putations may not undnly influence the result.

It is evident, in the first place, that for the correction of our fundamental equation we need
not trouble ourselves with the position of the orbit in the solar system. The intervals of time,
which determine this correction, depend only-on the three heliocentric distances 7, r,, r; and the
two heliocentric angles, which will be represented by v,—v; and v;—w,, if we write vy, #, v; for
the true anomalies. These angles (v,—v; and v;—v,) may be determined from 7y, r;, 7; and ny, ny, 25,
and therefore from 7, 7, 7, and the given intervals. For our fundamental equation, which may be
written

nliﬁl—'nﬂlg+n3913=0, (33)

indicates that we may form a triangle in which the lengths of the sides shall be n,ry, 775, and nars,
(let us say for brevity, s, $,, 8;,) and the directions of the sides parallel with the three heliocentric
directions of the body. The angles opposite s, and s; will be respectively v;—v; and v,—v,. We
have therefore, hy a well-known formula,

tan =Y [ (1—=8+8)(s1+8—83)
2 (814824 83)(— S1+ $2+ 83)

(34)
tan ©2=01_ [(—=8i+8+85)(81—82+82)

2 (81+82+83)(8{+.§2—S§)

* When an approximate orbit is known in advance, we may correct the fundamental c¢quation at once. The
formula will be given in the Summary, § xar.
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As soon, therefore, as the solution of our fundamenta. equation has given a suflicient approx-
imation to the values of ry, 73, ry (say five- or six-figure values, if our final result is to be as exact
as seven-figure logarithms can mmke it), we calenlate a;, ny, n; with seven-figure logarithms by
cquations (2), and the heliocentric angles by equations (34).

The semi-parameter corresponding to these values of tho helioecntric distances and angles is
given by the eqnation

= M7 1— N+ Mgty (35)

P
Ny —Ng4Ny

The expression 7, —n,+4n,;, which occurs in the valne of the semi-parameter, and the expres-
sion n,ry—nyrs4ngry, O 8, —8;+ 83, which ocenrs both in the value of the semi-parameter and in the
formul® for determining the heliocentric angles, represent small quantitics of the second order (if
we call the helioeentric angles small gnantities ot the first order), and eannot be very acenrately
determined from approximate numerical valnes of their separate terms. The first of these quanti-
ties may, however, be determined aceurately by the formula

""'""'*‘"3=,Arl!!)' Zi;.*_ A%ﬁ’il (36)
With respect to the quantity 8 —s;48;, a little consideration will show that if we are careful to
use the same value wherever the expression ocenrs, both in the formul:e for the heliocentric angles
and for the semi-parameter, the inacenracy of the determination of this value from the cause men-
tioned will be of no consequence in the process of correcting the fundamental equation. For,
althongh the logarithm of 8,—s,+ 8, as caleulated by seven figure logarithms from r,, 7, r; may be
accurate only to fonr or five figures, we may regard it as absolutely correet if we make a very
small ehange in the value of one of the heliocentrie distanees (say ;). We need not trouble our-
selves farther about this change, for it will be of a magnitude which we neglect in computations
with seven-figure tables. That the heliocentric angles thus determined may not agree as closely
as they might with the positions on the lines of sight determined by the first solution of the
fundamental equation is of no especial eonsequence in the correction of the fundamental equation,
which only requires the exact folfillment of two conditions, viz., that our values of the heliocen-
tric distances and angles shall have the relations required by the fundamental equation to the
given Intervals of time, and that they shall have the relations required by the exact laws of
elliptic motion to the ealculated intervals of time. The third condition, tifat Tione’ot' these values
shall differ too widely from the actual values, is of a looser character.

After the determination of the heliocentrie angles and the semi-parameter, the eccentrieity and
the true anomalies of the threc positions may next be determined, and from these the intervals of
time. These proeesses require no espeeial notice. The appropriate formule will be given in the
Sammary of Formule.

DETERMINATION OF THE ORBIT FROM THE THREE POSITIONS AND THE INTERVALS OF TIME.

The values of the semi-parameter and the heliocentrie angles as given in the preceding para-
graphs depend upon the quantity 8, —s,4-s;, the numerical determination of which from sy, s, and s,
is critical to the second degree when the heliocentric angles are small. This was of no consé-
quence in the process which we have called the correction of the fundamental equation. But for
the actual determination of the orbit from the positions given by the correctel equation—er by
the nncorrected equation, when we judge that to be sufficient—a more accurate determination of

this quantity will generally be neeessary. This may be obtained in different ways, of which the
following is perhaps the most simple. Let us set

-~
=g

®

4 3_ely (37)

and s, for the length of the vector &,, obtained by taking the square root of the sum of the squares
of the components of the vector, Ttis evident that s, is the longer and s, the shorter diagonal of
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a parallelogram of whieh the sides are s; and s;. The area of the triangle having the sides s, 8, s;
i3 therefore equal to that of the triangle having the sides s, s, s,, each being one-half of the
parallelogram. This gives

(814 82+ 83)(—81 82+ 83) (81— 83+ 83) (81 82— 83) = (814 8,4 86)( — $1+ 84+ 83)(8, —84+83)(81+8,—53), (38)

and

(81824 83)( — 81452+ 83) (8148, —85)

et sa=(s|+s4+835( '—Slﬂ«t+33)(31—84_-|~_83)(§'|_+34—'_33). (39)

The numerieal determination of this value of 8, —s,+-s, is eritieal only to the first degree.

The eceentrieity and the true anomalies may be determined in the same way as in the correc-
tion of the formula. The position of the orbit in space may be derived from the following eonsid-
erations. The veetor —&; is direeted from the sun toward the second position of the body ; the
veetor €, from the first to the third position. If we set

¥ @4'@2

8,2

-

€5=€4 62 ’ (40)
the veetor €;s will be in the plane of the orbit, perpendicular to —&, and on the side toward
which anomalies inerease. If we write & for the length of &;,

_C? and E"’
8 S5

will be unit veetors. Let 3 and 3 be unit veetors determnining the position of the orbit, I being
drawn from the sun toward the perihelion, and }' at right angles to 3, in the plane of the orbit,
and on the side toward which anomalies inerease. Then

E;s

Y=—cos 1*2;2-—sin vy =2 (41)
L0 85

< - (42)

Y/ = —sin z'2§2+cos Vp—°
Sg 8

.
The time of perihelion passage (7') may be determined from any one of the observations by
the equnation
gi(t—T)=E—e sin E, © 43)

the eecentrie anomaly E being calculated from the true anomaly ». The interval ¢t—7 in this
equation is to be measured in days. A better value of 7 may be found by averaging the three
values given by the separate observations, with such weights as the eircumstances may suggest.
But any considerable differenees in the three values of T would indieate the necessity of a seecond
eorreetion of the formula, and furnish the basis for it.

For the caleulation of an ephemeris we have

R=—aeI+eos F aX+sin F by’ (44)

in connection with the preeeding equation.

Sometimes it may be worth while to make the ealculations for the correetion of the formula
in the slightly longer form indicated for the determination ot the orbit., This will be the ease
when we wish simunltaneously to eorreet the formula for its theoretieal imperfeetion, and to correet
the observations by eomparison with others not too remote. The rough approximation to the orbit
given by the uneorreeted formula may be sufficient for this purpose. In faet, for observations
separated by very small intervals, the imperfeetion of the nneorrected formula will be likely to af-
feet the orbit less than the errors of the observations. 3

The ecomputer may prefer to determine the orbit from the first and third helioeentrie positions
with their times. This proeess, which has eertain advantages, is perhaps a little longer than
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3Rq
Pl o1
(L4 Ry)ry?

@=+ (G{&)

r =gt +p’

R2=B2

7'23

For control:

}')//= 3R

(1 —Rz)rzz

B=pr+(€3Fa)

r 32 — q32 + p32

B
R3=;3§
- For control :
Pm__3Réq3-_
(14 Ry)ry?

NATIONAL ACADEMY OF SCIENCES.

Compoxients of &1
(X'=/1151+A151R1—1)10’1
p'=Am+ Ay Ri—P' g, p 111
V=404 4.6 R —Ply,

Components of &,

ar=— (1~ Ry qﬁ%?—(&"&)) )
ﬁz=—rh(1—Rz)<Qz+ %j—(@z%z)) g 11,

Ya=-—Cy(1 —Re)<92+§—:— (@’82))

/

8P =a’+ P+ ' =(1—Ry)ry

Components of &*
a'=—854+ 5B+ Play,

,3”=—772+7]2R2+P'7/32 11~
Y'==C4 G4 Py,

Components of &,
X =
ay=A4,5,(14-Ry) <q.1+";:_'-:— (C5Fa) )
Y .
ﬁ3=A3'73(1 + R1)<q3+ ;7_:— (Gg'(‘g)) lII3

Z 2
73=A3:3(1+R3)(43+ _C: —(C5'3s) )

sPt=ay+ B4 yt=A2(14 Ry)or?

Components of &/’

"= Axio A8, Ry— P
B'=Ayp+ A4, Ry— PGy > 111
Y""=A4304AGR— Py,

91

The computer is now to assume any reasonable values either of the geoeentrie distauees, pj,
f2y P2, or of the heliocentric distances, ry, 1y, 74 (the former in the case of a comet, the latter in the
case of an asteroid,) and from these assumed values to compute the rest of the following quantities:

By equations III;, IIT',
QO
log 7
IOg R]
log (14+R)
log P
a
S
y4!
al
Vil
yl

By equations IIL, 1%,

By equations I1Is, 111/,

G2 g3
log #, log 7,
log R, log R;
log (1—R,) log (14 E;)
log P" log P
(27} a3
B fa
Ve Vs
all aIII
ﬁl! ﬂlll

yll ylll
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approximation. Whether L is also to be rccomputed, depends on its magnitude and on that of
the correction of ¢;, which remains to be made. In the later stages of the work, when the cor-
rections are small, the terms containing I may be neglected altogether.

The corrections of ¢y, ¢;, ¢; should be repeated until the equations
a=0. £=0 y=0

are nearly satisfied. Approximate values of r,, 7,, 7; may suffice for the following computations,
which, however, must be made with the greatest exactness.

»

VIL

Test of the first hypothesis.
log 7y, log 7y, log 73, (approximate values from the preceding computations.)

N=A,By*+ By7°4 A3 Bor5®
s=Am+4,Byri?
$=1,—Byr3*?

83=Asr;+ AsBars®
s=3(5145:48s)

8—8),8—8,8—83

The value of s—s, may be very small, and its logarithm in consequence ill determined. This
will do no harm if the computer is careful to use the same value—computed, of course, as carefully
as possible—wherever the expression oceurs in the following formuloe.

8§—381)(8—8;)(8—83) ) 2
R=\/( 1)( . 2)(8—383 tan ,}(,02_4,1).:8_1’83 A
2(s—s
02 2) tan $(os—v)=; %
' §—8
tan }(v;—v,)=—g—
For adjustment of values: 3(03—01)=3(v;—01)+ 3 (V3~2,)
P_2
. L
- e sin (Ve o) =gt sinlg(v:—vl) )
0S 3(v34+7)= £+£_2
# 008 4ot ) =5 08 H(o—3)
tan 3(v;4v) €
For control : € COS V= f) =]
A 2
_ J1—e P
=y I+e =
tan 3E,=¢ tan §o, tan 31E,=¢ tan v, tan 3 Fy=¢ tan v,

T ca]cA:a/a(Eg—Ez)-!—eag sin Ez—ea/& sin E3

5 ate, =0} (B — By) +ea? sin B,—eal sin K,
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S(8—8) (S—s,) (8—3s)

TPy y prs)

‘

" :. \ S- S— { —83)
R A5 (90 (B0 tan J(es—vy)=—5—

“- ‘_ e 8 8—‘;
2 o i
;. - N:A]R!+R3+A.3R3 tan *(f’:_h)=‘_‘_ Ps
| x B : _h
B 92R%
"y ol ' RS
‘ 2 J =2 (8—81) (8—31) .- 3m— ")=(3—a,) (5—%)
omputer shonld be careful to use the corrected valnes of 4,, 4;. (See VIIL) Triflin
he angles should be distribated. s ) y
A%
esin (v 4r)=___"1 3
oot ) 2 sin §(vs—n)
2,2 ,
e cos & T =£___
i 2 cos 3(r;—v1)
tan %('03-*-171) e J
€ CoS ’Uz=£—-1
T3
l—e P
Direction-cosines of semi-major-axis.
]=_C08 z',az_sin 2 0
8
—_ ¢os v,ﬁz_ sin v, 3
$2
__Ccost _sin s
b5 = 8 " 85 X3
Direction-cosines of semi-minor-axis.
l:: — Slzlt,az-l- co:s’l‘zas
" ”=_si1;:,ﬂz+co:u,ﬂs
___sSin 7 COS 73
v= Y v+ e -
Components of .the semi-axes.
a,=al a,=am a,=an
b,=br b,=bu b.=bv

™ . &1






MEMOIRS OF THI NATIONAL ACADEMY OF SCIENCES. 97

Determine B; s0 as to make

Bl BZ BS
L ety
4 sin 3(E,—By) sin (B, — ) sin }(I,— Ey)
eqnal to either member of the last equation.
It is not necessary that the times for whieh E\, I7,, Es, r, r,, 15, are calenlated shonld pre-

cisely agree with the times of observation corrected for aberration. Let the former be represented
by t/, t/, ty/, and the latter by t,/, t;”, ty’/; and let -

4 lOg T]=10g (tg”-—tz”)—lo.g (tgl—tzl), ~
4 log ty=log (&'’ —t/")—log (ty/’—1)).

We may find B, B;, A, A3, B:, as above, using t/, 1/, ty/, and then use dlogr,, dlogz, to
correct their values, as in § VIIL

NUMERICAL EXAMPLE.

To illustrate the nnmerical computations we have cliosen the following example, both on
aceount of the large heliocentric motion, and beeause Ganss and Oppolzer have treated the same
data by their different methods.

The data are taken from the Theoria Motus, § 159, viz:

Times, 1805, September. ... 5. 51336 139, 42711 265, 39813
Longitudes of Ceres .._..... 95° 52’ 18,56 09° 49 5,87 | 118° 5' 28”85
+47° 16/ 36,80 | 470 38" 49".39

Logs of the Sun's distanee. ..

Latitudes of Ceres .........] —0° 59 34”.06
} 0. 0031514 9. 9929861 0. 0056974

Longitudes of the Earth....| 3420 54’ 56,00 |. 117° 12" 43",25 \ 241° 58" 507,71

The positions of Ceres have been freed from the effects of parallax and aberratioa.

I

From the given times we obtain the following valnes:

Control :

H. Mis. 597——7

Numbers. Logarithms,
ty—t 133. 91375 2. 1268252
&b 125. 97102 2. 1002706
tz—h 259, 83477 2. 4147809
A, . 4847187 9, 6854897
A3 . 5152312 9.7120443
) . 3358520
T3 . 3624066
iRy 9. 6692113
B; . 3183722
Bs 9. 5623916

A, By + By A, B,—2.4959086
37,7,=2.4959081
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Ag — 77826 + .005042 + .0013222 | + .0000021
@ | + | 3.34235 2. 56409 2.569132 2, 5704542 2. 5704563
logrs | + . 52600 . 412233 . 4130733 . 4132934 . 4132937
log R, | 4 | 874037 9, 081673 9.0791524 9, 0784920
log (1—I:) | + | 9.97543 9.944142 9, 9444566 9, 9445766
log P | 4 | 871411 9, 199120 9, 1954270 9. 1944598
a | 4 . 81059 . 638489 . 6397466 . 6400760
fr. | — | 8.05379 2. 172660 2. 1787230 2. 1803116
ye | — . 28858 . 181843 . 1825486 . 1827338
&7 . 20182 . 2491854
B |-—"| 1,08177 1. 2018221
S . . 13464 . 1400944
@ =p3 —.5599304 a;=—[9.3810737] (¢;+1.5798163) (14 R5)
ri=q;2+.7130624 fa=[9.6537308] (¢:— .4630521) (14 Ry)  III,
Ry=[9.5623916]r,~* ys= [8.8361236](g:4+ .5599304) (1+R;)
a'l'=—240477—[9.38107 | Ry— P ay
)
r '{'=L3T7-7?—11;])1§3’z@ B! =+ 450537+ [9.65373| Ry— P’ 8, '» TII
e ' =+.068569+(8.83613] Ry— Py,
Ags — .80780 | — .04055 + . 0025316 | 4 . 0000031
g | 4+ | 3.24945 2.44165 2.40110 2.4036316 2.4036347
legrs | -+ | 0.52600 .412217 -, 4057319 . 4061394 . 4061399
log Rs | + | 7.98439 8. 325742 8.3451948 8. 3439733
log (14+Bs) | + .00417 . 009099 . 0095108 . 0094843
leg P/ | 4 { 7.91715 |. 8.357016 8.3817516 8. 3501993
@ = (91517253 . 987590 . 9785152 . 9790776
B | + | 1.26749 . 910305 . K924956 . 8936069
ol meL . 26373 .210171 . 2075292 . 2076940
o . 22847 . 2222335
g |+ . 44441 . 4390163
Y R . 06690 . 0650888
IV.
The values of a/, §, ete., furnish the basis for the computation of the following quantities :
2 ay=—.01254 a,=—.03517 Ay=—.07232
b=+4.01726 by=—.00525 by=—.00845
¢=—.15746 = —.08526 Cy=—.04050
For.@ we get three values sensibly identical. Adopting the mean, we set
G=.01006.
We also get
H=—.00998, L=.02322.*
V.
Taking the values of a;, a;, etc., from the columns under I1I,, IIl;, III;, we form the residunals
a=—.06058, f=—.16692, y=—.05557.

From these, with the numbers last computed, we get

C,=—.65888, 0, =—.76983, Cy=—.79939,

* It would have been better to omit altogether the calculation of I and L, if the small value of the latter could
have been foreseen. In fact, it will be found that the terms containing L hardly impreve the ceuvergence, being
smaller than gnantities which have been neglected. Nevertheless, the use of these terms in this example will illus-
trate a process which in other cases may be beneficial.
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The correeted values of ¢, ¢, ¢; give
log r,=0.42823717, log r,=0.4132937, - log r,=0.4061399.
We have carried the approximation farther than is necessary for the following correction of

the formula, in order to see exactly where the uncorrected formula weuld lead us, and for the
control afforded by the fourth residuals.

VIIL
The computations for the test of the uncerrected formula (the first hypothesis) are as follows:
Number or arc. Logarithm. Number or are. Logarithm.
7 0. 4252377 e | + 8. 9025438
) 0. 4132937 & | g 9. 9652259
s 0. 4061399 FALIFAE 0.4419546
LB~ | + . 01174865 8. 0699879 tan 4, | — | —35° 41’ 39".75 9. 8563809
By | 4 .11980944 | 9.0784911 tan dv; [ — | —19° 53’ 287,93 | 9,5584981
AsByrs™ |+ .01137670 | 8.0560162 tan o | — | — 49 13’ 52.55 | 8.8601380
N |+ . 14203479 9. 1551380 tan 3E, | — | —33° 3% 0".17 9. 8216068
8 |+ 1. 3308476 0. 1241283 tan E; | — | —I5° 28 6.3 9. 5237240
83 i % ngl)g%g 8 :lig;gggg tan $E; | — | — 3° 54’ 24,21 8. 8343639
83 . . i ) —B7° / s
7| 2.4761248 | 0.39377%5 -y g e L T M L
s—s | + 1.1452772 0. 0589106 sin Bs | — | — 7048 48 .42 | 9.1333734
s—s | + 0. 1964632 9, 2932212 I
A | W 1. 1343844 0. 0547602 ea? sin E, — . 3387061 9. 5298230 |
o e 9. 5065898 ealsin By | — .2209545 | 9.3443029
\ p |+ T 8‘ 2§%ggg ealsin By | _ .0499861 | 86988491
tz]l: 38;:_:3 i 15© 39/ 36//: 38 9: 4:1)76792 (la (Eq—El) + 2. 4226307 0. 3842872
tan 4(vs—0) | 4 310 27 477,20 | 9.7866915 ol (B—E) | 4 2.3301145 | 0.3690515
e sin }(vs-+0) | — 8.7099387 Freics 2.3048791 | 0.36264%2
e cos 3(vstv) |+ 8. 7872701 Ticie. |+ 2, 1681461 0. 3360885
tan §(vs411) | — | —39° 55/ 327,31 9. 9226686

VIIL

The logarithms of the calculated values of the intervals of time exceed those of the given
valies by .0002416 for the first interval (z3) and .0002365 for the sccond (7;). Therefore, since the
correetions for aberration have been incerperated in the data, we set for the correction of the
formula (for the second hypothesis)

4 log 7,=—.0002365 4 log 7= —.0002416
This gives
4 log 4,=.0000026 4 log 4,=—.0000025
4 log By=—.0004872 4 log B,=—.0004782 4 log B;=—.0004665

The new values of the logarithins of 4,, A4; are

log 4,=9.68564923 log 4,=9.7120418


















